Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Int J Mol Sci ; 23(23)2022 Nov 26.
Article in English | MEDLINE | ID: covidwho-2296638

ABSTRACT

The knowledge of interactions between different molecules is undoubtedly the driving force of all contemporary biomedical and biological sciences. Chemical biology/biological chemistry has become an important multidisciplinary bridge connecting the perspectives of chemistry and biology to the study of small molecules/peptidomimetics and their interactions in biological systems. Advances in structural biology research, in particular linking atomic structure to molecular properties and cellular context, are essential for the sophisticated design of new medicines that exhibit a high degree of druggability and very importantly, druglikeness. The authors of this contribution are outstanding scientists in the field who provided a brief overview of their work, which is arranged from in silico investigation through the characterization of interactions of compounds with biomolecules to bioactive materials.


Subject(s)
Molecular Biology
2.
Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis ; 42(12):3719-3729, 2022.
Article in Chinese | Scopus | ID: covidwho-2201244

ABSTRACT

The far infrared (1~10 THz) and mid-infrared (400~4 000 cm-1) spectra of six common antibiotics (Ofloxacin capsules, Ofloxacin tablets, Norfloxacin capsules, Azithromycin tablets, Roxithromycin tablets and Levofloxacin hydrochloride tablets), three antiviral drugs for COVID-19 (Ribavirin tablets, Abidol hydrochloride tablets and Chloroquine phosphate tablets) and an expectorant drug (Ambroxol hydrochloride tablets) within shelf-life were studied. The effects of vehicles and another high temperature environment (65 ℃) on the structure and crystal form of drugs were simulated and fed back to the changes in infrared spectra. After two months of continuous experiments, it was found that the structure and crystal form of other drugs had hardly changed except in ambroxol hydrochloride tablets. When capsule drugs were placed in high-temperature environment for a long time, the epidermis would become brittle and easy to rupture, but the efficacy of internal drugs had hardly changed. Taking fluoroquinolone antibiotics (Ofloxacin and Norfloxacin) as examples, combined with density functional theory (DFT) and the potential energy distribution (PED) method, the theoretical infrared spectra of the two antibiotics monomers, polymers and crystals were calculated by Crystal 14 and Gaussian 16 software with B3LYP/6-311++G(d,p) basis set. The vibrational modes and their contribution rates corresponding to all characteristic peaks were obtained, and the experimental spectrum was accurately identified. It was also found that from monomer to polymer and then to crystal, the stacking force (π-π interaction) between lattices accounted for the largest proportion of inter-molecular interaction, more than 90%. Therefore, the theoretical calculation was more consistent with the experimental results only when the crystal with periodic boundary conditions was taken as the initial configuration. The vibrational modes in the far infrared band mainly came from the collective vibration of molecules (vibration accounts for more than 99%, rotation and translation account for less than 1%), and the out-of-plane bending caused by inter-molecular hydrogen bond and Van der Waals force contributes the most, more than 90%. In the mid-infrared band, there were also a certain proportion of inter-molecular interactions. For example, the peaks of norfloxacin at 1 440 cm-1 and ofloxacin at 1 524 cm-1 can only be reproduced in the theoretical spectrum with the crystal as the configuration, respectively, from the collective vibration and the stretching of O-H…O bonds. © 2022 Science Press. All rights reserved.

3.
J Clin Tuberc Other Mycobact Dis ; 25: 100276, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1629351

ABSTRACT

Tuberculosis (TB) is one of the leading infectious diseases worldwide even with the ravaging COVID-19 pandemic in recent times. This mandated further search and exploration of more possible anti-TB drug candidates against M. tuberculosis strains. As an extension of our previous work on the homology modeled cytochrome b subunit of the bc1 complex (QcrB) of Mycobacterium tuberculosis, an in-silico design was carried out in order to further explore more newly potential anti-TB compounds. Ligand 26 was selected as the lead template (scaffold A) based on our previous docking results and its less bulky structure. Successively, eight (8) new ligands (A1-A8) were designed with better binding affinities in comparison to the scaffold template (-6.8 kcal/mol) and isoniazid standard drug (-6.00 kcal/mol) respectively. In addition, three (3) designed ligands namely, A6, A2, and A7 with higher binding affinities were validated via ADME and toxicity prediction analysis, and the results showed zero violations of Lipinski rules with similar bioavailability, and high rate in gastrointestinal absorption, while toxicity parameters such as carcinogenicity and cytotoxicity were all predicted as non-toxic (inactiveness). The designed IPA compounds in the present study could serve as a promising gateway that could help the medicinal and synthetic chemist in the exploration of a new set of derivatives as anti-TB agents. Therefore, this research strongly recommends further experimental consideration of the newly designed IPA compounds through synthesis, in-vitro and in-vivo studies to validate the theoretical findings.

4.
Struct Chem ; 33(1): 159-167, 2022.
Article in English | MEDLINE | ID: covidwho-1401063

ABSTRACT

Electronic structure analysis of bimolecular formation of favipiravir (Fav) and a representative model of boron-nitrogen-carbon (BNC) cage was performed in this work for providing more insightful information regarding the drug delivery purposes by the importance of Fav drug for medication of COVID-19. To achieve the purpose of this work, density functional theory (DFT) calculations were carried out to obtain the stabilized structures and corresponding molecular and atomic scale descriptors. Six models of BNC-Fav complexes were obtained reading the participation of different atomic positions of Fav to interactions with the BNC cage surface. The results yielded BNC-Fav2 at the highest strength and BNC-Fav4 at the lowest strength of bimolecular formations. Molecular orbital-related features and atomic scale quadrupole coping constants all revealed that BNC-Fav2 complex could be proposed for employing in drug delivery process by managing the loaded Fav contribution to future interactions.

5.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 05.
Article in English | MEDLINE | ID: covidwho-1376929

ABSTRACT

Progress in the design of G-quadruplex (G4) binding ligands relies on the availability of approaches that assess the binding mode and nature of the interactions between G4 forming sequences and their putative ligands. The experimental approaches used to characterize G4/ligand interactions can be categorized into structure-based methods (circular dichroism (CD), nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography), affinity and apparent affinity-based methods (surface plasmon resonance (SPR), isothermal titration calorimetry (ITC) and mass spectrometry (MS)), and high-throughput methods (fluorescence resonance energy transfer (FRET)-melting, G4-fluorescent intercalator displacement assay (G4-FID), affinity chromatography and microarrays. Each method has unique advantages and drawbacks, which makes it essential to select the ideal strategies for the biological question being addressed. The structural- and affinity and apparent affinity-based methods are in several cases complex and/or time-consuming and can be combined with fast and cheap high-throughput approaches to improve the design and development of new potential G4 ligands. In recent years, the joint use of these techniques permitted the discovery of a huge number of G4 ligands investigated for diagnostic and therapeutic purposes. Overall, this review article highlights in detail the most commonly used approaches to characterize the G4/ligand interactions, as well as the applications and types of information that can be obtained from the use of each technique.

6.
Biol Cell ; 113(7): 311-328, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1294968

ABSTRACT

BACKGROUND INFORMATION: Comprehensive libraries of plasmids for SARS-CoV-2 proteins with various tags (e.g., Strep, HA, Turbo) are now available. They enable the identification of numerous potential protein-protein interactions between the SARS-CoV-2 virus and host proteins. RESULTS: We present here a large library of SARS CoV-2 protein constructs fused with green and red fluorescent proteins and their initial characterisation in various human cell lines including lung epithelial cell models (A549, BEAS-2B), as well as in budding yeast. The localisation of a few SARS-CoV-2 proteins matches their proposed interactions with host proteins. These include the localisation of Nsp13 to the centrosome, Orf3a to late endosomes and Orf9b to mitochondria. CONCLUSIONS AND SIGNIFICANCE: This library should facilitate further cellular investigations, notably by imaging techniques.


Subject(s)
COVID-19/virology , Peptide Library , SARS-CoV-2/metabolism , Viral Proteins/metabolism , A549 Cells , Cell Line , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Host Microbial Interactions/physiology , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Fluorescence , Protein Interaction Domains and Motifs , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , SARS-CoV-2/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Time-Lapse Imaging , Viral Proteins/genetics
7.
Int J Mol Sci ; 22(13)2021 Jun 29.
Article in English | MEDLINE | ID: covidwho-1288902

ABSTRACT

ACE2 has been established as the main receptor for SARS-CoV-2. Since other human coronaviruses are known to use co-receptors for viral cell entry, it has been suggested that DPP4 (CD26) could be a potential additional binding target or co-receptor, supported by early molecular docking simulation studies. However, recent biophysical studies have shown this interaction to be very weak. We have conducted detailed molecular docking simulations to predict the potential binding interactions between the receptor binding domain (RBD) of the spike protein of SARS-CoV-2 and DPP4 and compare them with the interactions observed in the experimentally determined structure of the complex of MERS-CoV with DPP4. Whilst the overall binding mode of the RBD of SARS-CoV-2 to DPP4 is predicted to be similar to that observed in the MERS-CoV-DPP4 complex, including a number of equivalent interactions, important differences in the amino acid sequences of SARS-CoV-2 and MERS-CoV result in substantially weakened interactions with DPP4. This is shown to arise from differences in the predicted proximity, nature and secondary structure at the binding interface on the RBD of SARS-CoV-2. These findings do not support DPP4 being a significant receptor for SARS-CoV-2.


Subject(s)
Dipeptidyl Peptidase 4/metabolism , Molecular Docking Simulation , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Crystallography, X-Ray , Dipeptidyl Peptidase 4/chemistry , Humans , Protein Binding , Protein Domains , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Thermodynamics
8.
Comput Theor Chem ; 1199: 113215, 2021 May.
Article in English | MEDLINE | ID: covidwho-1135292

ABSTRACT

Today, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has recently caused a severe outbreak worldwide. There are still several challenges in COVID-19 diagnoses, such as limited reagents, equipment, and long turnaround times. In this research, we propose to design molecularly imprinted polymers as a novel approach for the rapid and accurate detection of SARS-CoV-2. For this purpose, we investigated molecular interactions between the target spike protein, receptor-binding domain of the virus, and the common functional monomers used in molecular imprinting by a plethora of computational analyses; sequence analysis, molecular docking, and molecular dynamics (MD) simulations. Our results demonstrated that AMPS and IA monomers gave promising results on the SARS-CoV-2 specific TEIYQAGST sequence for further analysis. Therefore, we propose an epitope approach-based synthesis route for specific recognition of SARS-CoV-2 by using AMPS and IA as functional monomers and the peptide fragment of the TEIYQAGST sequence as a template molecule.

9.
Viruses ; 12(9)2020 08 26.
Article in English | MEDLINE | ID: covidwho-1121700

ABSTRACT

Coronaviruses are viral infections that have a significant ability to impact human health. Coronaviruses have produced two pandemics and one epidemic in the last two decades. The current pandemic has created a worldwide catastrophe threatening the lives of over 15 million as of July 2020. Current research efforts have been focused on producing a vaccine or repurposing current drug compounds to develop a therapeutic. There is, however, a need to study the active site preferences of relevant targets, such as the SARS-CoV-2 main protease (SARS-CoV-2 Mpro), to determine ways to optimize these drug compounds. The ensemble docking and characterization work described in this article demonstrates the multifaceted features of the SARS-CoV-2 Mpro active site, molecular guidelines to improving binding affinity, and ultimately the optimization of drug candidates. A total of 220 compounds were docked into both the 5R7Z and 6LU7 SARS-CoV-2 Mpro crystal structures. Several key preferences for strong binding to the four subsites (S1, S1', S2, and S4) were identified, such as accessing hydrogen binding hotspots, hydrophobic patches, and utilization of primarily aliphatic instead of aromatic substituents. After optimization efforts using the design guidelines developed from the molecular docking studies, the average docking score of the parent compounds was improved by 6.59 -log10(Kd) in binding affinity which represents an increase of greater than six orders of magnitude. Using the optimization guidelines, the SARS-CoV-2 Mpro inhibitor cinanserin was optimized resulting in an increase in binding affinity of 4.59 -log10(Kd) and increased protease inhibitor bioactivity. The results of molecular dynamic (MD) simulation of cinanserin-optimized compounds CM02, CM06, and CM07 revealed that CM02 and CM06 fit well into the active site of SARS-CoV-2 Mpro [Protein Data Bank (PDB) accession number 6LU7] and formed strong and stable interactions with the key residues, Ser-144, His-163, and Glu-166. The enhanced binding affinity produced demonstrates the utility of the design guidelines described. The work described herein will assist scientists in developing potent COVID-19 antivirals.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Cysteine Endopeptidases/metabolism , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/metabolism , Antiviral Agents/chemistry , Betacoronavirus/enzymology , Binding Sites , COVID-19 , Catalytic Domain , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Drug Design , Drug Repositioning , Humans , Molecular Docking Simulation/methods , Molecular Dynamics Simulation , Pandemics , Protease Inhibitors/chemistry , Protein Conformation , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry
10.
Molecules ; 26(3)2021 Jan 28.
Article in English | MEDLINE | ID: covidwho-1055085

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection inducing coronavirus disease 2019 (COVID-19) is still an ongoing challenge. To date, more than 95.4 million have been infected and more than two million deaths have been officially reported by the WHO. Angiotensin-converting enzyme (ACE) plays a key role in the disease pathogenesis. In this computational study, seventeen coding variants were found to be important for ACE2 binding with the coronavirus spike protein. The frequencies of these allele variants range from 3.88 × 10-3 to 5.47 × 10-6 for rs4646116 (K26R) and rs1238146879 (P426A), respectively. Chloroquine (CQ) and its metabolite hydroxychloroquine (HCQ) are mainly used to prevent and treat malaria and rheumatic diseases. They are also used in several countries to treat SARS-CoV-2 infection inducing COVID-19. Both CQ and HCQ were found to interact differently with the various ACE2 domains reported to bind with coronavirus spike protein. A molecular docking approach revealed that intermolecular interactions of both CQ and HCQ exhibited mediation by ACE2 polymorphism. Further explorations of the relationship and the interactions between ACE2 polymorphism and CQ/HCQ would certainly help to better understand the COVID-19 management strategies, particularly their use in the absence of specific vaccines or drugs.


Subject(s)
Angiotensin-Converting Enzyme 2 , Chloroquine/chemistry , Hydroxychloroquine/chemistry , Molecular Docking Simulation , Polymorphism, Genetic , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Chloroquine/pharmacokinetics , Chloroquine/therapeutic use , Humans , Hydroxychloroquine/pharmacokinetics , Hydroxychloroquine/therapeutic use , Protein Domains , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Drug Treatment
11.
Int J Pept Res Ther ; 27(2): 1043-1056, 2021.
Article in English | MEDLINE | ID: covidwho-1046735

ABSTRACT

Initial phase of COVID-19 infection is associated with the binding of viral spike protein S1 receptor binding domain (RBD) with the host cell surface receptor, ACE2. Peptide inhibitors typically interact with spike proteins in order to block its interaction with ACE2, and this knowledge would promote the use of such peptides as therapeutic scaffolds. The present study examined the competitive inhibitor activity of a broad spectrum antimicrobial peptide, Dermaseptin-S4 (S4) and its analogues. Three structural S4 analogues viz., S4 (K4), S4 (K20) and S4 (K4K20) were modelled by substituting charged lysine for non-polar residues in S4 and subsequently, docked with S1. Further, the comparative analysis of inter-residue contacts and non-covalent intermolecular interactions among S1-S4 (K4), S1-S4 (K4K20) and S1-ACE2 complexes were carried out to explore their mode of binding with S1. Interestingly, S1-S4 (K4) established more inter-molecular interactions compared to S4 (K4K20) and S1-ACE2. In order to substantiate this study, the normal mode analysis (NMA) was conducted to show how the structural stability of the flexible loop region in S1 is affected by atomic displacements in unbound S1 and docked complexes. Markedly, the strong interactions consistently maintained by S1-S4 (K4) complex revealed their conformational transition over the harmonic motion period. Moreover, S1-S4 (K4) peptide complex showed a higher energy deformation profile compared to S1-S4 (K4K20), where the higher energy deformation suggests the rigidity of the docked complex and thus it's harder deformability, which is also substantiated by molecular dynamics simulation. In conclusion, S1-S4 (K4) complex has definitely exhibited a functionally significant dynamics compared to S1-ACE2 complex; this peptide inhibitor, S4 (K4) will need to be considered as the best therapeutic scaffold to block SARS-CoV-2 infection.

12.
J Genet Eng Biotechnol ; 19(1): 16, 2021 Jan 25.
Article in English | MEDLINE | ID: covidwho-1045589

ABSTRACT

BACKGROUND: The World Health Organization has recently declared a new coronavirus disease (COVID-19) a pandemic and a global health emergency. The pressure to produce drugs and vaccines against the ongoing pandemic has resulted in the use of some drugs such as azithromycin, chloroquine (sulfate and phosphate), hydroxychloroquine, dexamethasone, favipiravir, remdesivir, ribavirin, ivermectin, and lopinavir/ritonavir. However, reports from some of the clinical trials with these drugs have proved detrimental on some COVID-19 infected patients with side effects more of which cardiomyopathy, cardiotoxicity, nephrotoxicity, macular retinopathy, and hepatotoxicity have been recently reported. Realizing the need for potent and harmless therapeutic compounds to combat COVID-19, we attempted in this study to find promising therapeutic compounds against the imminent threat of this virus. In this current study, 16 derivatives of gallic acid were docked against five selected non-structural proteins of SARS-COV-2 known to be a good target for finding small molecule inhibitors against the virus, namely, nsp3, nsp5, nsp12, nsp13, and nsp14. All the protein crystal structures and 3D structures of the small molecules (16 gallic acid derivatives and 3 control drugs) were retrieved from the Protein database (PDB) and PubChem server respectively. The compounds with lower binding energy than the control drugs were selected and subjected to pharmacokinetics screening using AdmetSAR server. RESULTS: 4-O-(6-galloylglucoside) gave binding energy values of - 8.4, - 6.8, - 8.9, - 9.1, and - 7.5 kcal/mol against Mpro, nsp3, nsp12, nsp13, and nsp15 respectively. Based on the ADMET profile, 4-O-(6-galloylglucoside) was found to be metabolized by the liver and has a very high plasma protein binding. CONCLUSION: The result of this study revealed that 4-O-(6-galloylglucoside) could be a promising inhibitor against these SAR-Cov-2 proteins. However, there is still a need for further molecular dynamic simulation, in vivo and in vitro studies to support these findings.

13.
Clin Sci (Lond) ; 134(24): 3233-3235, 2020 12 23.
Article in English | MEDLINE | ID: covidwho-975035

ABSTRACT

As this extraordinary year, blemished by COVID-19, comes to an end, I look back as Editor-in-Chief to the many great successes and new initiatives of Clinical Science. Despite the challenges we all faced during 2020, our journal has remained strong and vibrant. While we have all adapted to new working conditions, with life very different to what it was pre-COVID-19, the one thing that remains intact and secure is the communication of scientific discoveries through peer-reviewed journals. I am delighted to share with you some of the many achievements of our journal over the past year and to highlight some exciting new activities planned for 2021.


Subject(s)
Biomedical Research/standards , Editorial Policies , Periodicals as Topic/standards , Biomedical Research/statistics & numerical data , Biomedical Research/trends , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Forecasting , Humans , Pandemics/prevention & control , Periodicals as Topic/statistics & numerical data , Periodicals as Topic/trends , SARS-CoV-2/immunology , SARS-CoV-2/physiology
14.
Chem ; 6(9): 2135-2146, 2020 Sep 10.
Article in English | MEDLINE | ID: covidwho-695918

ABSTRACT

The surface stability and resulting transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), specifically in indoor environments, have been identified as a potential pandemic challenge requiring investigation. This novel virus can be found on various surfaces in contaminated sites such as clinical places; however, the behavior and molecular interactions of the virus with respect to the surfaces are poorly understood. Regarding this, the virus adsorption onto solid surfaces can play a critical role in transmission and survival in various environments. In this article, we first give an overview of existing knowledge concerning viral spread, molecular structure of SARS-CoV-2, and the virus surface stability is presented. Then, we highlight potential drivers of the SARS-CoV-2 surface adsorption and stability in various environmental conditions. This theoretical analysis shows that different surface and environmental conditions including temperature, humidity, and pH are crucial considerations in building fundamental understanding of the virus transmission and thereby improving safety practices.

SELECTION OF CITATIONS
SEARCH DETAIL